1. Wprowadzenie

Roéwnania rézniczkowe czastkowe — rownania, w ktorych wyste-
puje niewiadoma funkcja wielu zmiennych i jej pochodne wzgle-
dem réznych zmiennych — stanowia dziedzine, ktora (szczegodlnie
w oczach studenta, wyposazonego w bagaz dwodch pierwszych lat
studiéw matematycznych i przyzwyczajonego do eleganckich teorii,
budowanych w trybie: abstrakcyjna i ogélna definicja, przy-
klad, lemat, twierdzenie, dowdd, wniosek) dosé¢ powaznie r6zni
sie od innych galtezi matematyki. Sktada sie na to kilka przyczyn.

Po pierwsze, jest to dziedzina niezwykle obszerna, taczaca sie
z wieloma partiami analizy matematycznej, a takze z geometria
rozniczkowa oraz (w mniejszym zakresie) rachunkiem prawdopo-
dobienistwa. Osoba, ktéra na Wydziale Matematyki, Informatyki
i Mechaniki UW prowadzi wyklad Rownania rézniczkowe czgstkowe
I, powinna przedstawié¢ studentom do$é¢ obszerny material, ktérego
poczatki siegaja lat 1740-1750 i prac Daniela Bernoulliego oraz Jeana
d’Alemberta poswieconych rownaniu struny, a ktoérego najbardziej
zaawansowana partia pochodzi z okolic potowy dwudziestego wieku
— i praktycznie nie spos6b jej oméwié, nie siegajac po twierdzenie
Stokesa oraz okruchy analizy funkcjonalnej. Przyktady ilustrujace
sposoby rozwigzywania pojedynczych rownan lub wlasnosci rozwig-
zan sa czesto nielatwe — nie ze wzgledu na jakas szczeg6lng komplika-
cje pojeé, lecz dlatego, ze aby ocenié¢ i docenié konicowy wynik, trzeba
sie najpierw przebié¢ przez warstwe rachunkéw, na ogédt dluzsza niz,
powiedzmy, w algebrze liniowej. Mato kto lubi rachunki — szczegdélnie
przed ich wykonaniem. Dodajmy, ze niektére z przyktadéw podawa-
nych zwyczajowo na ¢wiczeniach z tego przedmiotu mialy w swoim
czasie przelomowe znaczenie. Na przyklad teoria szeregéw Fouriera
wyrosta z prob rozwigzywania réwnania falowego i réwnania prze-
wodnictwa cieplnego w jednym wymiarze przestrzennym, a korzenie
teorii przestrzeni Hilberta (oraz operatorow zwartych) wiaza sie z ba-
daniem rownan Laplace’a i Poissona (i wartosci wlasnych laplasjanu).
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Po drugie, nie istnieje co$ takiego, jak ogdlna teoria réwnan
rézniczkowych czgstkowych. Nie ma wtasciwie zadnych twier-
dzen, ktére dotyczylyby wszystkich réwnar rézniczkowych czast-
kowych (za wyjatek, wymagajacy i tak przyjecia bardzo ostrych za-
tozenr i powaznego ograniczenia klasy rozpatrywanych réwnan, moz-
na uzna¢ twierdzenie Cauchy’ego i Kowalewskiej, ktére omawiamy
krotko w ostatnim rozdziale). Owszem, sa przyklady — czesto bar-
dzo rozbudowane, sg twierdzenia, dotyczace zwykle jednego réwna-
nia lub uktadu réwnar, a w wersji optymistycznej — tej czy innej
klasy réwnari, na ogot dosé waskiej, bioragc pod uwage, jak szero-
ka jest klasa wszystkich napiséw, ktére bylibySmy sklonni nazwaé
réwnaniami rézniczkowymi czastkowymi. Ale na tym, w jakims
sensie, koniec.

Po trzecie wreszcie, w réwnaniach rézniczkowych czastkowych
czesto warto odwolaé sie do motywacji fizycznej (oraz do fizycznej
interpretacji niektorych twierdzen, wzoréw itp.). To wlasnie fizyk
moéwi niekiedy matematykowi, ktore réwnania z nieskonczonej listy
sa wazne i warto je rozwazy¢ najpierw — bowiem ich rozwiazania
opisuja jakis proces fizyczny. (Niemal wszystkie osoby, ktore na dal-
szych stronach zostang wymienione z nazwiska, zajmowaly sie i ma-
tematyka, i fizyka) Nie oznacza to oczywiscie, ze nie sposob uczy¢
sie teorii rownan czastkowych, o ile sie nie zna fizyki. Z drugiej stro-
ny, elementarna znajomosé fizyki pozwala wyrobi¢ sobie pelniejszy
obraz niektérych partii teorii.

W $wietle tych uwag nie ma sensu rozpoczynaé¢ wyktadu od ogdél-
nej definicji réwnania rézniczkowego czastkowego (z ktorej i tak
nie bedziemy pozniej korzystac). Zamiast tego podamy kilka przy-
ktadow. Blizsze omoéwienie trzech z nich zajmie nam mniej wiecej
pot semestru.

1.1. Gars$¢ przykladow

Uktad réwnan Cauchy’ego—Riemanna

Wiadomo (patrz dowolny podrecznik do teorii funkcji analitycz-
nych), ze funkcja f = u +iv: C — C ma w kazdym punkcie po-
chodna zespolona wtedy i tylko wtedy, gdy jej czesé rzeczywista
u 1 zespolona v spelniaja uklad réwnan

Uy = Uy, Uy = —Uy. (1.1)

Zatem, w pewnym sensie, calta teoria funkcji analitycznych zajmu-
je sie badaniem wtasnoéci rozwigzan jednego uktadu dwoch linio-
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wych rownan rézniczkowych czastkowych (pierwszego rzedu, o sta-
tych wspotezynnikach).

Roéwnanie powierzchni minimalnych

Niech D = D(0,1) C R? bedzie dyskiem jednostkowym; rozpa-
trujemy wszystkie funkcje u: D — R klasy C?, ktorych wartosci
brzegowe u! op Sa rowne ustalonej funkcji ciaglej ¢ : D — R. Dla
takich u potézmy

= / V 1+ |Vul?dzdy,
D

gdzie
Vul? = (u:)* + (u,)*

jest kwadratem dlugosci gradientu funkcji u. Wartoscia funkcjona-
tu P jest pole powierzchni stanowigcej wykres funkcji u; brzegiem
tej powierzchni jest ustalona krzywa Jordana w R3, sktadajaca sie
z punktow (cost,sint, p(cost,sint)). Mozna zada¢ naturalne pyta-
nie: czy P osiaga swa warto$¢ najmniejsza, a jesli tak, to dla jakiej
funkcji? Nietrudno poda¢ warunek konieczny na to, by P[u| = min;
jesli tak jest, to z pewnoscia dla kazdej liczby € € R i kazdej funkcji
Y € Cg°(D) mamy

F(e): = Plu+ey] > Plu] = F(0).

F jest funkcja jednej zmiennej € i w zerze ma minimum lokalne, wiec
(prosze sprawdzi¢, ze F jest funkcja rézniczkowalna!) F’(0) = 0.
Rozniczkujac pod znakiem calki, otrzymujemy zatem warunek

T¢T + uyl/)y

V14 |Vul?

lub réwnowaZnie, na mocy twierdzenia Gaussa—Ostrogradskiego,

dedy=0 Ve CX(D),

dedy =0

/1/’[( 1+|w\2> +<\/#7Vu\2>y
V€ C5°(D).

7 dowolnosci ¢ wynika, ze wyrazenie w nawiasie kwadratowym jest
réwne zeru, tzn.

U u
— ) + 7”) =0 w dysku D. 1.2
(«/1+|VUP>$ <\/1+|vu\2 , Y (12)

Liste oznaczen
mozna znalezé

w dodatku A

Twierdzenie
Gaussa—Ostrogradskiego
formutujemy na
poczatku rozdziatu 4
(patrz tw. 4.3)
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Jest to wspomniany warunek konieczny. Jego geometryczna inter-
pretacja jest nastepujaca: wykres funkcji v ma w kazdym punkcie
Srednig krzywizne rowna 0.

Roéwnanie przewodnictwa cieplnego
Niech (2 bedzie obszarem w R"™; dodatkows zmienng ¢ > 0 be-
dziemy interpretowaé jako czas. Réwnanie

ur — Ayu =0, (1.3)

gdzie

n 2

i=1 v

jest tzw. operatorem Laplace’a (krotko: laplasjanem), nazywa sie
rownaniem przewodnictwa cieplnego. Niewiadoma funkcja u : 2 x
[0,00) — R jest, z fizycznego punktu widzenia, temperatura sub-
stancji (jednorodnej i izotropowej) wypelniajacej obszar 2; cislej,
u(z,t) jest temperatura w punkcie = € 2 w chwili czasu ¢.

Aby zagwarantowaé istnienie i jednoznacznos$é rozwigzan, row-
nanie (1.3) uzupehia sie warunkami poczatkowymi i brzegowymi.
Na przyktad zakltada sie np., ze dany jest poczatkowy rozktad tem-
peratury u(z,0) = f(z) i wiadomo ponadto, w jaki spos6b dokonuje
sie wymiana ciepta miedzy {2 i otoczeniem, np.

. u‘ o0 = 0 (warunek brzegowy Dirichleta: stata temperatura
zewnetrza obszaru (2);

e pochodna normalna g—:i ‘ 00 =0 (warunek brzegowy Neumanna:
brak przeptywu ciepta przez brzeg obszaru (2).

Podamy, dla n = 3, szkicowe wyprowadzenie réwnania (1.3).
Potrzebne w nim beda dwa zatozenia o charakterze fizycznym. Po
pierwsze, przyjmiemy, ze tzw. strumien ciepta J(z,t), tzn. wektor
wskazujacy kierunek i tempo przeplywu ciepta, jest proporcjonalny
do gradientu temperatury,

J(x,t) = —kV,u = —k(ug, , Usy, Usy).

(Stata k jest dodatnia, minus ma sens fizyczny.) Zatem, ilos¢ ciepta
przeptywajacego przez powierzchnie ¥ w jednostce czasu jest rowna

/(J7n>d0;

P
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n oznacza jednostkowy wektor normalny do powierzchni . ITlosé
ciepta, wyplywajacego w jednostce czasu z obszaru V C (2, to

/ (J.n)do = / divJ dz.

ov 14

(Rownosé calek wynika z twierdzenia Gaussa—Ostrogradskiego; za-
ktadamy milczaco, ze temperatura u jest funkcja klasy C?). Drugie
zatozenie o charakterze fizycznym orzeka, ze kazdy obszar V C 2
ogrzewa sie proporcjonalnie do ilosci ciepta, ktora dori wptywa. Prze-
to, z uwagi na ostatnie rownanie,

/c—da:-/(J,n) do :/diVJd:L‘,

\%4

/(divJ —i—C%) dr =0.
v

Poniewaz V jest dowolny, wiec wynika stad, ze

to znaczy

)
ca—z — —divJ = div(kVau) = kA,u,

to znaczy przy odpowiednim doborze jednostek! istotnie jest
Uy = ATU

@ Roéwnanie Laplace’a

Jest to rownanie Au = 0. Jego rozwigzania nazywa sie funkcjami
harmonicznymi (patrz rozdz. 4).

Jak poprzednio, A jest operatorem Laplace’a, funkcja u zas jest
okreslona na pewnym obszarze {2 C R"™. Réwnanie Laplace’a opisuje
stany stacjonarne rozmaitych proceséw fizycznych: w zaleznosci od
interpretacji, funkcja u moze by¢ np. stacjonarnym (granicznym)
rozkltadem temperatury w obszarze {2, potencjatlem pola grawita-
cyjnego badz pola elektromagnetycznego (w obszarze pozbawionym
zrodet pola). Dla n = 2, cze$¢ urojona i rzeczywista funkcji anali-
tycznej (patrz przyktad ) sa funkcjami harmonicznymi.

1Widag, ze gdy pomijamy wspotczynniki ¢ i k, to lewa strona u; ma jednostke sto-
pien na sekunde, natomiast prawa strona, Agzu, ma jednostke stopien przez metr do
kwadratu. Fizyk likwiduje te niezgodno$¢, nadajac odpowiednie jednostki wspolczyn-
nikom. My nie bedziemy si¢ ta sprawa wigcej przejmowac.
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Rownanie falowe

Jest to rownanie
Uy — A u =0, re CR"t>D0. (1.5)

Dla n = 1 réwnanie (1.5) opisuje (niewielkie) drgania struny, dla
n = 2 — drgania membrany (blony bebenka), w najciekawszym
za$ z fizycznego punktu widzenia przypadku n = 3 — fale elektro-
magnetyczne (a takze akustyczne). Wartosci u(x,t) niewiadomej
funkcji u sa wychyleniami z polozenia rownowagi.

Od badania wtasnosci rozwiagzan réwnania falowego w najprost-
szym przypadku, dla n = 1, zaczniemy prawdziwa prace.





