
1. Wprowadzenie

Równania różniczkowe cząstkowe – równania, w których wystę-
puje niewiadoma funkcja wielu zmiennych i jej pochodne wzglę-
dem różnych zmiennych – stanowią dziedzinę, która (szczególnie
w oczach studenta, wyposażonego w bagaż dwóch pierwszych lat
studiów matematycznych i przyzwyczajonego do eleganckich teorii,
budowanych w trybie: abstrakcyjna i ogólna definicja, przy-
kład, lemat, twierdzenie, dowód, wniosek) dość poważnie różni
się od innych gałęzi matematyki. Składa się na to kilka przyczyn.

Po pierwsze, jest to dziedzina niezwykle obszerna, łącząca się
z wieloma partiami analizy matematycznej, a także z geometrią
różniczkową oraz (w mniejszym zakresie) rachunkiem prawdopo-
dobieństwa. Osoba, która na Wydziale Matematyki, Informatyki
i Mechaniki UW prowadzi wykład Równania różniczkowe cząstkowe

I , powinna przedstawić studentom dość obszerny materiał, którego
początki sięgają lat 1740–1750 i prac Daniela Bernoulliego oraz Jeana
d’Alemberta poświęconych równaniu struny, a którego najbardziej
zaawansowana partia pochodzi z okolic połowy dwudziestego wieku
– i praktycznie nie sposób jej omówić, nie sięgając po twierdzenie
Stokesa oraz okruchy analizy funkcjonalnej. Przykłady ilustrujące
sposoby rozwiązywania pojedynczych równań lub własności rozwią-
zań są często niełatwe – nie ze względu na jakąś szczególną komplika-
cję pojęć, lecz dlatego, że aby ocenić i docenić końcowy wynik, trzeba
się najpierw przebić przez warstwę rachunków, na ogół dłuższą niż,
powiedzmy, w algebrze liniowej. Mało kto lubi rachunki – szczególnie
przed ich wykonaniem. Dodajmy, że niektóre z przykładów podawa-
nych zwyczajowo na ćwiczeniach z tego przedmiotu miały w swoim
czasie przełomowe znaczenie. Na przykład teoria szeregów Fouriera
wyrosła z prób rozwiązywania równania falowego i równania prze-
wodnictwa cieplnego w jednymwymiarze przestrzennym, a korzenie
teorii przestrzeni Hilberta (oraz operatorów zwartych) wiążą się z ba-
daniem równań Laplace’a i Poissona (i wartości własnych laplasjanu).
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Po drugie, nie istnieje coś takiego, jak ogólna teoria równań
różniczkowych cząstkowych. Nie ma właściwie żadnych twier-
dzeń, które dotyczyłyby wszystkich równań różniczkowych cząst-
kowych (za wyjątek, wymagający i tak przyjęcia bardzo ostrych za-
łożeń i poważnego ograniczenia klasy rozpatrywanych równań, moż-
na uznać twierdzenie Cauchy’ego i Kowalewskiej, które omawiamy
krótko w ostatnim rozdziale). Owszem, są przykłady – często bar-
dzo rozbudowane, są twierdzenia, dotyczące zwykle jednego równa-
nia lub układu równań, a w wersji optymistycznej – tej czy innej
klasy równań, na ogół dość wąskiej, biorąc pod uwagę, jak szero-
ka jest klasa wszystkich napisów, które bylibyśmy skłonni nazwać
równaniami różniczkowymi cząstkowymi. Ale na tym, w jakimś
sensie, koniec.

Po trzecie wreszcie, w równaniach różniczkowych cząstkowych
często warto odwołać się do motywacji fizycznej (oraz do fizycznej
interpretacji niektórych twierdzeń, wzorów itp.). To właśnie fizyk
mówi niekiedy matematykowi, które równania z nieskończonej listy
są ważne i warto je rozważyć najpierw – bowiem ich rozwiązania
opisują jakiś proces fizyczny. (Niemal wszystkie osoby, które na dal-
szych stronach zostaną wymienione z nazwiska, zajmowały się i ma-
tematyką, i fizyką) Nie oznacza to oczywiście, że nie sposób uczyć
się teorii równań cząstkowych, o ile się nie zna fizyki. Z drugiej stro-
ny, elementarna znajomość fizyki pozwala wyrobić sobie pełniejszy
obraz niektórych partii teorii.

W świetle tych uwag nie ma sensu rozpoczynać wykładu od ogól-
nej definicji równania różniczkowego cząstkowego (z której i tak
nie będziemy później korzystać). Zamiast tego podamy kilka przy-
kładów. Bliższe omówienie trzech z nich zajmie nam mniej więcej
pół semestru.

1.1. Garść przykładów

A Układ równań Cauchy’ego–Riemanna

Wiadomo (patrz dowolny podręcznik do teorii funkcji analitycz-
nych), że funkcja f = u + iv : C → C ma w każdym punkcie po-
chodną zespoloną wtedy i tylko wtedy, gdy jej część rzeczywista
u i zespolona v spełniają układ równań

ux = vy, uy = −vx. (1.1)

Zatem, w pewnym sensie, cała teoria funkcji analitycznych zajmu-
je się badaniem własności rozwiązań jednego układu dwóch linio-
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wych równań różniczkowych cząstkowych (pierwszego rzędu, o sta-
łych współczynnikach).

B Równanie powierzchni minimalnych

Niech D = D(0, 1) ⊆ R
2 będzie dyskiem jednostkowym; rozpa-

trujemy wszystkie funkcje u : D → R klasy C2, których wartości
brzegowe u

∣∣
∂D

są równe ustalonej funkcji ciągłej ϕ : ∂D → R. Dla
takich u połóżmy

P [u] =

∫

D

√
1 + |∇u|2 dxdy,

gdzie
|∇u|2 = (ux)

2 + (uy)
2

jest kwadratem długości gradientu funkcji u. Wartością funkcjona-
łu P jest pole powierzchni stanowiącej wykres funkcji u; brzegiem
tej powierzchni jest ustalona krzywa Jordana w R

3, składająca się
z punktów (cos t, sin t, ϕ(cos t, sin t)). Można zadać naturalne pyta-
nie: czy P osiąga swą wartość najmniejszą, a jeśli tak, to dla jakiej
funkcji? Nietrudno podać warunek konieczny na to, by P [u] = min;
jeśli tak jest, to z pewnością dla każdej liczby ε ∈ R i każdej funkcji
ψ ∈ C∞

0 (D) mamy

F (ε) : = P [u+ εψ] ≥ P [u] = F (0).

F jest funkcją jednej zmiennej ε i w zerze ma minimum lokalne, więc
(proszę sprawdzić, że F jest funkcją różniczkowalną!) F ′(0) = 0.
Różniczkując pod znakiem całki, otrzymujemy zatem warunek Listę oznaczeń

można znaleźć
w dodatku A

∫

D

uxψx + uyψy√
1 + |∇u|2

dxdy = 0 ∀ ψ ∈ C∞
0 (D),

lub równoważnie, na mocy twierdzenia Gaussa–Ostrogradskiego, Twierdzenie
Gaussa–Ostrogradskiego
formułujemy na
początku rozdziału 4
(patrz tw. 4.3)

∫

D

ψ

[(
ux√

1 + |∇u|2

)

x

+

(
uy√

1 + |∇u|2

)

y

]
dxdy = 0

∀ ψ ∈ C∞
0 (D).

Z dowolności ψ wynika, że wyrażenie w nawiasie kwadratowym jest
równe zeru, tzn.

(
ux√

1 + |∇u|2

)

x

+

(
uy√

1 + |∇u|2

)

y

= 0 w dysku D. (1.2)
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Jest to wspomniany warunek konieczny. Jego geometryczna inter-
pretacja jest następująca: wykres funkcji u ma w każdym punkcie
średnią krzywiznę równą 0.

C Równanie przewodnictwa cieplnego

Niech Ω będzie obszarem w R
n; dodatkową zmienną t ≥ 0 bę-

dziemy interpretować jako czas. Równanie

ut − ∆xu = 0, (1.3)

gdzie

∆x =

n∑

i=1

∂2

∂x2
i

(1.4)

jest tzw. operatorem Laplace’a (krótko: laplasjanem), nazywa się
równaniem przewodnictwa cieplnego. Niewiadoma funkcja u : Ω ×
[0,∞) → R jest, z fizycznego punktu widzenia, temperaturą sub-
stancji (jednorodnej i izotropowej) wypełniającej obszar Ω; ściślej,
u(x, t) jest temperaturą w punkcie x ∈ Ω w chwili czasu t.

Aby zagwarantować istnienie i jednoznaczność rozwiązań, rów-
nanie (1.3) uzupełnia się warunkami początkowymi i brzegowymi.
Na przykład zakłada się np., że dany jest początkowy rozkład tem-
peratury u(x, 0) = f(x) i wiadomo ponadto, w jaki sposób dokonuje
się wymiana ciepła między Ω i otoczeniem, np.

• u
∣∣
∂Ω

= 0 (warunek brzegowy Dirichleta: stała temperatura
zewnętrza obszaru Ω);

• pochodna normalna ∂u
∂n

∣∣
∂Ω

= 0 (warunek brzegowy Neumanna:
brak przepływu ciepła przez brzeg obszaru Ω).

Podamy, dla n = 3, szkicowe wyprowadzenie równania (1.3).
Potrzebne w nim będą dwa założenia o charakterze fizycznym. Po
pierwsze, przyjmiemy, że tzw. strumień ciepła J(x, t), tzn. wektor
wskazujący kierunek i tempo przepływu ciepła, jest proporcjonalny
do gradientu temperatury,

J(x, t) = −k∇xu = −k(ux1
, ux2

, ux3
).

(Stała k jest dodatnia, minus ma sens fizyczny.) Zatem, ilość ciepła
przepływającego przez powierzchnię Σ w jednostce czasu jest równa

∫

Σ

〈J ,n〉dσ;



1.1. Garść przykładów 13

n oznacza jednostkowy wektor normalny do powierzchni Σ. Ilość
ciepła, wypływającego w jednostce czasu z obszaru V ⊆ Ω, to

∫

∂V

〈J ,n〉 dσ =

∫

V

divJ dx.

(Równość całek wynika z twierdzenia Gaussa–Ostrogradskiego; za-
kładamy milcząco, że temperatura u jest funkcją klasy C2). Drugie
założenie o charakterze fizycznym orzeka, że każdy obszar V ⊆ Ω
ogrzewa się proporcjonalnie do ilości ciepła, która doń wpływa. Prze-
to, z uwagi na ostatnie równanie,

−
∫

V

c
∂u

∂t
dx =

∫

∂V

〈J ,n〉 dσ =

∫

V

divJ dx,

to znaczy ∫

V

(
divJ + c

∂u

∂t

)
dx = 0.

Ponieważ V jest dowolny, więc wynika stąd, że

c
∂u

∂t
= −divJ = div(k∇u) = k∆xu,

to znaczy przy odpowiednim doborze jednostek1 istotnie jest
ut = ∆xu.

D Równanie Laplace’a

Jest to równanie ∆u = 0. Jego rozwiązania nazywa się funkcjami
harmonicznymi (patrz rozdz. 4).

Jak poprzednio, ∆ jest operatorem Laplace’a, funkcja u zaś jest
określona na pewnym obszarze Ω ⊆ R

n. Równanie Laplace’a opisuje
stany stacjonarne rozmaitych procesów fizycznych: w zależności od
interpretacji, funkcja u może być np. stacjonarnym (granicznym)
rozkładem temperatury w obszarze Ω, potencjałem pola grawita-
cyjnego bądź pola elektromagnetycznego (w obszarze pozbawionym
źródeł pola). Dla n = 2, część urojona i rzeczywista funkcji anali-
tycznej (patrz przykład A ) są funkcjami harmonicznymi.

1Widać, że gdy pomijamy współczynniki c i k, to lewa strona ut ma jednostkę sto-

pień na sekundę, natomiast prawa strona, ∆xu, ma jednostkę stopień przez metr do

kwadratu. Fizyk likwiduje tę niezgodność, nadając odpowiednie jednostki współczyn-
nikom. My nie będziemy się tą sprawą więcej przejmować.
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E Równanie falowe

Jest to równanie

utt − c2∆xu = 0, x ∈ Ω ⊆ R
n, t > 0. (1.5)

Dla n = 1 równanie (1.5) opisuje (niewielkie) drgania struny, dla
n = 2 – drgania membrany (błony bębenka), w najciekawszym
zaś z fizycznego punktu widzenia przypadku n = 3 – fale elektro-
magnetyczne (a także akustyczne). Wartości u(x, t) niewiadomej
funkcji u są wychyleniami z położenia równowagi.

Od badania własności rozwiązań równania falowego w najprost-
szym przypadku, dla n = 1, zaczniemy prawdziwą pracę.




