CZĘŚĆ OGÓLNA

ZASADY SYSTEMATYKI PALEONTOLOGICZNEJ

Systematyka paleontologiczna jest naukowym badaniem różnorodności organizmów oraz wszelkich związków między nimi, które przedstawia się w postaci wzajemnych powiązań.

Najmniejszą jednostką systematyczną jest gatunek (lacińskie species). W sensie biologicznym w obręb gatunku łączone są osobniki, które mogą się rozmnażać i dawać płodne potomstwo. W paleontologii pojęcie gatunku jest traktowane nieco odmiennie, co wynika z dostępności materiału badawczego. Paleontologowie mają do dyspozycji materiał znacznie uboższy, gdyż rozpatrywane przez nich gatunki nie są reprezentowane przez żywe osobniki, lecz najczęściej przez szkielety bądź nawet ślady pozostawione przez organizmy, a które zachowały się w stanie kopalnym. Większość gatunków kopalnych została zatem wyróżniona na podstawie podobieństwa morfologicznego szkieletów.

Pozostałe jednostki systematyki, poczynając od najwyższej (w brzmieniu języka polskiego i łacińskiego), to:

- królestwo – regnum
- typ – phylum
- gromada – classis
- rząd – ordo
- rodzina – familia
- rodzaj – genus

Istnieją także jednostki pośrednie, takie jak np. podrząd – subordo, lub nadrząd – superordo.
ZASADY NOMENKLATUREY PALEONTOLOGICZNEJ

Odrębnym zagadnieniem, poza ustaleniem przynależności systematycznej badanego organizmu, jest sposób zapisu i przekazania tych informacji innym badaczom. Największe zasługi w zakresie nomenklatury biologicznej (a tym samym i paleontologicznej) wniósł w połowie wieku XVIII szwedzki badacz Carolus LINNAEUS. On to bowiem po raz pierwszy przedstawił konsekwentnie i logicznie wzajemnie sobie podporządkowane jednostki systematyczne. Badacz ten dla gatunków sobie podobnych wprowadził pojęcie rodzaju oraz zaproponował w roku 1758 zasady nazewnictwa badanych organizmów. W systemie tym każdy rodzaj i gatunek otrzymały osobną nazwę, przy czym dla określenia gatunku LINNAEUS zastosował nomenklaturę dwuimienną (binominalną, w brzmieniu języka łacińskiego), w której pierwsze słowo określało rodzaj, do którego gatunek należy, drugie zaś było właściwą nazwą gatunku. Zasada ta obowiązuje bez większych zmian do dnia dzisiejszego. Dzisiejszy zapis nazwy gatunkowej przedstawia się zatem następująco, np. dla psa domowego Canis familiaris LINNAEUS, 1758, przy czym nazwa rodzajowa pisana jest zawsze dużą literą, właściwa nazwa gatunkowa małą, a po nazwie podane jest nazwisko autora (twórcy gatunku) oraz po przecinku data ustanowienia opisanego gatunku.

Dla wszystkich pozostałych jednostek systematycznych, począwszy od rodzaju a skończywszy na królestwie, obowiązuje zasada, iż nazwę piszemy zawsze dużą literą, a po nazwie podajemy nazwisko autora oraz datę ustanowienia danej jednostki systematycznej, np. gromada Gastropoda CUVIER, 1797 (ślimaki).

[W tekstach drukowanych wszystkie nazwy rodzajowe i gatunkowe pisane są zawsze pismem pochylonym (kursywą), co zastosowano także w niniejszym przewodniku.]

Po zapoznaniu się z podstawowymi zasadami nomenklatury biologicznej oraz po ustaleniu przynależności systematycznej badanego okazu, można podać pełny zapis jednostek systematycznych, do których okaz ten należy. Przykładowo, dla wybranych gatunków ślimaków: Turritella badensis Sacco, 1895, oraz Turritella errorea COSSMANN, 1914, zapis ten wygląda następująco:
Regnum Animalia – zwierzęta
Subregnum Metazoa – wielokomórkowce
Phylum Mollusca – mięczaki
Classis Gastropoda CUVIER, 1797 – ślimaki
Ordo Caenogastropoda COX, 1959
Familia Territellidae CLARK, 1851
Genus Turritella LAMARCK, 1799
 Turritella badensis SACCO, 1895
 Turritella erronea COSSMANN, 1914

W literaturze paleontologicznej systematykę podaje się przeważnie w formie skróconej, uznając za fakt oczywisty, iż ślimaki należą do królestwa zwierząt i podkrólestwa wielokomórkowców.

Zapis nazwy gatunkowej może ulec pewnym modyfikacjom:

a) Za nazwą gatunkową może pojawić się nazwisko autora gatunku umieszczone w nawiasie. Zapis taki oznacza, iż dany gatunek zaliczany jest obecnie do rodzaju innego, niż czyniono to w czasie ustanawiania tego gatunku. Pierwotnie nazwa gatunkowa wyglądała zatem następująco, np.:

 Ammonites macrocephalus SCHLOTHEIM, 1813,

zaś po rewizji (dokonywanej przez tego samego badacza w późniejszej pracy, lub przez badacza innego; w tym przypadku rewizji dokonał ZITTEL w 1884 r.) wygląda następująco:

 Macrocephalites macrocephalus (SCHLOTHEIM, 1813).

b) Między nazwą rodzajową a nazwą gatunkową może pojawić się skrót aff., od łacińskiego słowa (przymiotnika) affinis, co oznacza pokrewny, bliski. Zapis taki, np.:

 Macrocephalites aff. macrocephalus (SCHLOTHEIM, 1813)
 Turritella aff. badensis SACCO, 1895
stosujemy w przypadku, gdy badany okaz posiada oprócz cech charakterystycznych dla danego gatunku, także jakąś dodatkową cechę wyróżniającą. Cecha ta nie jest jednak na tyle istotna, aby mogła stanowić podstawę do ustanowienia nowego gatunku.

c) Między nazwą rodzajową a nazwą gatunkową może pojawić się skrót cf., od łacińskiego słowa (przynotnika) *conformis*, co oznacza podobny. Zapis taki, np.:

Macrocephalites cf. *macrocephalus* (SCHLOTHEIM, 1813)
Turritella cf. *badensis* SACCO, 1895

stosujemy, gdy w badanym okazie nie możemy wyróżnić wszystkich cech charakterystycznych dla gatunku, co spowodowane jest złym stanem zachowania okazu (skorodowaniem, oblamaniem itp.).

d) Nazwa gatunkowa może ograniczyć się tylko do zapisu nazwy rodzajowej i skrótu – sp. – od słowa *species*. Zapis taki, np.:

Macrocephalites sp.
Turritella sp.

stosujemy w przypadkach, gdy nie jesteśmy w stanie stwierdzić przynależności okazu do określonego gatunku danego rodzaju, co spowodowane może być niekompletnym stanem zachowania badanego okazu bądź brakiem dostatecznego materiału porównawczego (choćby np. dokładnych ilustracji w pracach poprzednich badaczy).

Przedstawiona problematyka systematyki i nomenklatury paleontologicznej wskazuje, iż w dziedzinach tych posługujemy się często nazwami pochodzącymi z języka łacińskiego. Podobna sytuacja panuje także w zakresie anatomii. Aby nazwy takie stosować prawidłowo, zarówno w piśmie jak i wymowie niejednokrotnie różnicują się od obowiązującej w języku polskim, do przewodnika niniejszego załączony jest DODATEK, który zawiera podstawowe zasady fonetyki i nazewnictwa łacińskiego.
STANY ZACHOWANIA SKAMIENIAŁOŚCI

Skamielactości są to szczątki organizmów lub ślady ich działalności życiowej, zachowane w stanie kopalnym. Wśród skamielactości rozróżniamy: skamielactości strukturalne (ang. body fossils) oraz skamielactości śladowe, czyli ichnoskamielactości (od greckiego ichnos – ślad; ang. trace fossils). Proces przeobrażania pogrzebanych w osadzie szczątków organicznych w skamielactości to fosylizacja.

Skamielactości strukturalne

W stanie kopalnym możliwe być zachowany szkielet wraz z tkankami miękkimi, jak w przypadku pleistoceńskiego nosorożca włoschatego ze Staruni. Okaz ten (fig. 1), zachowany wraz z mięśniami i skórą, znaleziony został w roku 1929 w miejscowości Starunia położonej 129 km na wschód od Przemyśla. Zwłoki tego nosorożca znajdowały się w warstwie osadu pleistoceńskiego przesyconego substancjami bitumicznymi i solanką. Oba te czyn-

Fig. 1. Szczątki nosorożca włoschatego Coelodonta antiquitatis (Blumenbach, 1807) w pozycji, w jakiej został znaleziony w osadzie ziemnym w Staruni na Podkarpaciu.

niki przyczyniły się do zakonserwowania ciała miękkiego, nie dopuszczając do rozwoju procesów gnilnych niszczących tkankę miękką. Zakonserwowany okaz znajduje się obecnie w zbiorach Zakładu Zoologii Systematycznej PAN
w Krakowie, natomiast replika jego zdobi wejście do British Museum (Natural History) w Londynie.

Podobny stan zachowania wykazują także okazy mamutów spotykane w wiecznej zamarzlinie na Syberii, przy czym w tym przypadku czynnikiem konserwującym była i jest do dnia dzisiejszego niska temperatura.

Większość skamieniałości, z którymi styka się paleontolog, jest zachowana w postaci samych szkieletów, a wyżej wymienione przykłady należą do wyjątków.

![Diagram of fossil formation](image)

Fig. 2. Powstawanie różnych stanów zachowania skamieniałości: A – muszla organizmu częściowo zagrzebana w osadzie, B – muszla całkowicie zagrzebana w osadzie, C-F – różne sposoby powstawania skamieniałości.

W stanie kopalnym szkielet może być zachowany w formie nieprzeobrażonej pod względem chemicznym i mineralogicznym, np. szkielety ramienionogów bądź jeżowców, pierwotnie kalcytowe (trygonalna odmiana...
PLANSZA 1

Przykłady unikatowo zachowanych skamieniałości przedstawiających pogrzebanie w osadzie żywych osobników
1 - Okoń *Mioplosus* usiłujący polknąć śledzia *Knightia* i przypuszczalnie zadawniony nim śmiertelnie z przybrzeżnych osadów trzeciorzędnym (eocenem) formacji Green River w stanie Wyoming, USA; wielkość naturalna [Zdjęcie dzięki uprzejmości Dr. Gerarda R. Case'a; Ridgefield, N. J.]; 2 - Krab *Titanocarcinus* przyjmujący pozycję obronną w momencie zatrucia wód opadem popiołu wulkanicznego z trzeciorzędnym (eocenem) przybrzeżnych osadów Alp Weneckich we Włoszech; wielkość naturalna [Zdjęcie dzięki uprzejmości Dr. A. Busulini & Dr. A. de Angeli; Montecchio Maggiore, Włochy].
PLANSZA 2

Przykłady rozmaitego stanu zachowania elementów szkieletowych skamieniałosci z obszaru Polski

3 - Muszla *Natica* z zachowanym wieczkiem; 4 - Muszla ramienionoga *Solidipontirostrum* z zachowaną barwą; dwojne skielełki „brachipodowe” Grzegorowicz; pow. x 2;
5 - Cały szkielet górniorojujskiego jeżowca *Hemicardis*, ukazany w przekroju w osadzie odlotowym; widoczne kołce oraz elementy aparatu szczękowego (łata nr Arystotelesa); Małogoszcz, wielkość naturalna;
6 - Muszla górniorojujskiego ślimaka *Nerinea* powleczonej powłoką onkolitową tworzącą „münum onkolitowę” (6a – widok z zewnątrz, 6b – przekrój); Sulejów, wielkość naturalna;
7 - Odcisk zewnętrzny kolonii górniorojujskiego koralowca drążonego przez mała drżące; widoczne odwęgi kilkudziesięciu koralowców oraz wypełnienie (ostrołki) wydzieleń zawierające muszle małże; Małogoszcz, wielkość naturalna;
8 - Muszla małże *Cardium* wypełniona sekrecyjnie kryształami wiwiawanu; pliocen Krymu, wielkość naturalna.
węglanu wapnia CaCO₃), w czasie procesów fosylizacji najczęściej nie ulegają przeobrażeniom.

W wielu przypadkach szkielet w czasie fosylizacji ulega przeobrażeniom w wyniku takich procesów, jak:

Krystalizacja, czyli przejście w stan krystaliczny, np. krzemionki – przejście niekrystalicznego opalu w krystaliczny chalcedon: takiemu procesowi podlegają np. opalowe igły gąbek.

Rekrystalizacja, czyli zmiana postaci krystalograficznej, np. przejście aragonitu (rombowa odmiana węglanu wapnia) w kalcyt; przykładem mogą być m.in. szkielety koralowców zbudowane pierwotnie z aragonitu.

Substytucja, czyli zastąpienie substancji mineralnej szkieletu materiałem wtórnym, co przejawiać się może m.in. jako:

Kalcytyzacja, czyli zastąpienie kalcytem np. krzemionki; takiemu procesowi mogą podlegać igły gąbek.

Dolomityzacja, czyli zastąpienie dolomitem np. kalcytu; przykładem mogą być szkielety koralowców.

Sylifikacja, czyli zastąpienie krzemionką, np. kalcytu lub aragonitu; takiemu procesowi podlegają m.in. szkielety koralowców, ramienionogów, amonitów oraz jeżowców.

Fosforytyzacja, czyli zastąpienie minerałami fosforanowymi (np. frankolitem z grupy apatytu); np. szkielety gąbek.

Uwęglenie, czyli wzbogacenie w węgiel; takiemu procesowi podlegają tkanki roślinne i szkielety graptolitów.

Tkanka miękka może ulec także procesowi mineralizacji, np. w efekcie procesu **pirytyzacji**, czyli wytrącania się w czasie procesów gnilnych pyrytu (siarczku żelaza FeS₂), który inkrustuje gnijącą tkankę.

W czasie procesu fosylizacji (fig. 2) szkielet może ulec całkowitemu rozpuszczeniu i jedynym dowodem istnienia organizmu może być bądź **odcisk** powierzchni zewnętrznej szkieletu (fig. 2D), bądź odlew wewnętrzny,
czyli ośrodka (fig 2C), lub też odlew zewnętrzny, czyli ośrodka urzęźbiona (fig. 2F). W niektórych przypadkach w przestrzeni między ośrodką a odciskiem (powstałą po rozpuszczeniu muszli) może dostać się ponownie nieskonsolidowany osad; tworzy się wtedy pseudomorfoza (fig. 2E).

Fig. 3. Zachowanie skamieniałości w konkrecji: A – widok zewnętrzny konkrecji,

Skamieniałości strukturalne w osadach kopalnych zachowują się niejednokrotnie tylko w obrębie konkrecji powstałych wokół szczątków organicznych w czasie przeobrażania osadu w litą skalę. Procesy zachodzące wówczas wokół zagrzebanego szczątku organicznego (np. procesy gnilne) prowadzą do zmiany warunków fizykochemicznych (np. pH, potencjału redox), co umożliwia wytracanie się innych związków chemicznych. Tworząca się konkrecja (fig. 3) jest z reguły współkształtna do zawartego w niej szczątka, choć nieraz przybiera odmienne kształty (bochenkowate, kuliste, itp.). Specyficzne warunki powstawania konkrecji umożliwiają czasem zachowanie wielu szczegółów morfologicznych szkieletu i tkanki miękkich oraz zachowanie pierwotnej substancji tego szkieletu. Przykładem może być zachowanie się aragonitowych muszli amonitów, belemnitów i innych mięczaków w kalcytowych konkrecjach w ilach jurajskich tworzących kry lodowcowe w okolicach Łukowa na Podlasiu.
PLANSZA 3
Skamieniałości zachowane w konkrecjach
1-3 – Skamieniałości roślinne z górnego karbonu Polski i USA: 1 – szyszka widłaka; kopalnia Porąbka-Klimontów [coll. A. KIN]; 2 – Skrzyp-klimonist, 3 – Liść paproci; formacja Mazon Creek, USA [coll. M. K. ZAPALSKI]; 4-8 – Skamieniałości zwierzące w konkrecjach węglanowych z obszaru Polski: 4 – Skrzypłocz Euproops; górny karbon, kopalnia Porąbka-Klimontów [coll. A. KIN]; 5 – Rak Hhopanaria; dolna kreda, Wąw. k. Tomaszowa Mazowieckiego; 6 – Amonit Saynoceras; dolna kreda, Wąw. k. Tomaszowa Mazowieckiego; 7 – Amonit Polythecinctes; jura środkowa (baton) okolice Częstochowy; 8 – Fragm. kon belemnitę Hibolithes; jura środkowa (kklowej), kra lodowcowa Łukowa.

Wszystkie okazy wielkości naturalnej lub nieco powiększone
PLANSZA 4

Skamieniałości śladowe związane z działalnością życiową trylobitów

1 – Rzeczywisty ślad spoczynku (1a) na powierzchni lawicy piaskowca, oraz jego odlew (1b) na spągu lawicy przykrywającej – ichnorodzaj *Rusophycus*; 2 – Odlew śladu spoczynku – ichnorodzaj *Rusophycus*, z odcisniętą płytką przedustną (hypostomą); 3 – Inny okaz *Rusophycus* z odcisniętymi elementami spodniej strony ciała trylobita; 4 – Odlew śladu pętania i rozgrzebywania osadu – ichnorodzaj *Cruziana* (zobacz także Pl. 5).

Wszystkie okazy z kambru górnego Wiśniówki Wielkiej k. Kiełc; wielkość naturalna

[z: ORŁOWSKI, RADWAŃSKI & RONIEWICZ 1971; RADWAŃSKI 1973]